Vendor Compliance Trading Partner Performance Management Implementation Guidelines

VICS TPAC Committee recommends that the BRAD Trading Partner Performance Management, Release 1.0.0 (with proposed modifications attached) be used to calculate all compliance-related metrics. Following are recommended implementation guidelines using that document as a basis.

**Service Level/Fill Rate %**
- Calculation basis should be set to the following:
  - Line level for calculating the PO service level
  - PO level for determination of measurement

**On-Time Delivery %**
- Calculation basis should be set to the following:
  - PO for calculating the PO on-time delivery
  - PO level for determination of measurement
- In a multiple delivery/shipment per PO scenario, all deliveries should arrive on or before the PO need-by date, or all shipments will be considered non-compliant.
- P.O. Need-by date should be used for Vendor Compliance Capabilities to measure suppliers.

**ASN/Packing List Accuracy %**
- Calculation basis should be set to the following:
  - Line level for calculating the ASN accuracy
  - Shipment level for determination of measurement

**On-Time ASN Delivery %**
- Calculation basis should be set to the following:
  - Shipment level for calculating the ASN on-time delivery
  - Shipment level for determination of measurement
- Vendor to retailer ASN shipment notifications - 1 hour delivery of ASN is required (For in-town shipments, if shipment arrives at Retailer prior to receipt of ASN, time stamps must be evaluated)
• Specifies the source of the date/time stamp of ASN delivery to be used to determine whether an ASN was on-time. The 214 EDI shipment status departed pick up location date/time should be the retailer data source.

**Preticketed Product Accuracy %**
• Calculation basis should be set to the following:
  o Line level for calculating the ASN service level (accuracy)
  o Unit (each/ticket) level for determination of measurement
• Requires Retailer provide picture with documentation.

**Packaging Specifications Accuracy %**
• Calculation basis should be set to the following:
  o Line level for calculating the packaging accuracy
  o Case/carton or unit level for determination of measurement
• Requires Retailer provide picture with documentation.

**Carton Label Accuracy %**
• Calculation basis should be set to the following:
  o Line level for calculating the carton accuracy
  o Case/carton level for determination of measurement
• Requires Retailer provide picture with documentation.
7.3.9. Service Level / Fill Rate (%)

7.3.9.1. Aliases
- Supplier Service Level
- Order to Delivery Service Level
- Order Fill Rate
- Case Fill Rate
- Item Fill Rate
- First time fill rate (%)

7.3.9.2. Definition
The percentage of product that a buyer received or the seller shipped compared to the original ordered quantity

7.3.9.3. Rationale
Be more externally focused using a measure that includes Buyer expectation vs. purely manufactured delivered capability. Improve Buyer’s Fill Rate level by comparing Received Units at the Buyer vs. Ordered Units by the Buyer. Buyer level reporting should match an individual buyer’s ordering unit.

Use this measure as a complement of Out of Stock and On Time measures (recognizing that Service Level/Fill Rate partly overlaps with On Time measures of availability driven delays). As part of the Trading Partner Performance scorecard, analysis of root cause data should drive the implementation of action plans, with the goal to systemically fix supply chain issues.

Principle
Measure is kept simple (as definition) reliable and actionable and is simple to report, largely relying on readily available information.

The “ordered units” should be taken from the “Original Buyer Order”. There are some events where the original orders are changed legitimately (e.g. wrong product ordered, order sent to wrong manufacturer) which could be given a reason code that updates the original order without impacting the fill rate %.

Note: If order changes come in between the Original Order and product receipt, this will be reflected in the Order Item / Quantity Change % measure.

Double counting of repeat orders will not be adjusted as it reflects true service level the customer is experiencing when repeated orders are constantly unfulfilled.

In the event a SKU is put on allocation, during periods of tight availability, demand quantities as determined by the demand planning organizations (minimum volume based on last unconstrained forecast) should be included in the measure to accurately reflect the service level to our customers. (Some of this demand may be automatically captured through customer orders while the remainder is manually loaded. This process is referred to as Suppressed Demand.)

Cuts/delays on Continuous Replenishment Program (CRP) or Vendor Managed Inventory (VMI) generated orders should be reported in Service Level / Fill Rate, even including orders on products which are used to fill up the truck.

Not yet Approved
All contents copyright © GS1 2008 Page 3 of 22
7.3.9.4. Formula

For Order to Receipt:

\[
Fill \ Rate(\%) = \frac{\text{Received Units}}{\text{Ordered Units}} \times 100
\]

For Order to Ship:

\[
Fill \ Rate(\%) = \frac{\text{Shipped Units}}{\text{Ordered Units}} \times 100
\]

**Ordered Units**: Units ordered by the buyer in the original order.

**Received Units**: Units received by the buyer. These are the invoiced units minus refused units.

\[
\text{Shipped / Received Units} = \frac{\text{Invoiced Units}}{\text{Refused Units}}
\]

(1) **System Captured Units**: Units input in the Order/Shipping/Billing (OSB) System using any order acquisition tool. Some order acquisition tools may drop some units due to product data base misalignment; this amount will be reflected as “Dropped Units”.

(2) **Dropped Units**: Units dropped by misalignment of Product Data Base between Buyer and Seller. Some of these misalignments are: Initiatives data, depletion time alignments and prices differences. E.g. orders on closed codes which are not processed in OSB.

(3) **Invoiced Units**: Units billed and shipped to Buyer.

\[
\text{Invoiced Units} = \text{System Captured Units} - \text{Canceled} \text{ Units}
\]

(4) **Canceled Units**: Units cut (or cancelled) or delayed due to availability issues during Delivery Schedule system (DSS/ATL) process, Loading process, Buyer caused or Allotments.

(5) **Refused (rejected) Units**: Units rejected by buyer due to Seller or Buyer reasons. Main mistakes are codes changes, quality issues or not ordered product.

### 7.3.9.5. Parameter

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item Scope Description</td>
<td>Text</td>
<td>Identifier of the item, brand or other product classification data element (e.g. “DVD Players”) for which service level is being measured.</td>
</tr>
<tr>
<td>Item Scope Type</td>
<td>Item Scope Type Code</td>
<td>Indicator of the type of product classification element the Item Scope Description represents (e.g. “ITEM”, “BRAND”, “CATEGORY”).</td>
</tr>
<tr>
<td>Parameter Name</td>
<td>Parameter Type</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>----------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Receiving Location Scope Description</td>
<td>Text</td>
<td>Identifier of the store, region, country or other receiving location classification data element (e.g. &quot;Value Mart&quot;) for which service level is being measured.</td>
</tr>
<tr>
<td>Receiving Location Scope Type</td>
<td>Location Scope Type Code</td>
<td>Indicator of the type of location classification element the receiving Location Scope Description represents (e.g. &quot;STORE&quot;, &quot;CHAIN&quot;, &quot;REGION&quot;, &quot;COUNTRY&quot;).</td>
</tr>
<tr>
<td>Shipping Location Context Value</td>
<td>Text</td>
<td>Identifier of the ship point, supplier, country or other shipping location classification data element (e.g. &quot;North Distribution Region&quot;) for which service level is being measured.</td>
</tr>
<tr>
<td>Shipping Location Context Type</td>
<td>Location Scope Type Code</td>
<td>Indicator of the type of location classification element the shipping location context value represents (e.g. &quot;PLANT&quot;, &quot;SUPPLIER&quot;, &quot;REGION&quot;, &quot;COUNTRY&quot;).</td>
</tr>
<tr>
<td>Period End</td>
<td>Date Time Stamp</td>
<td>Date and time of the end of the period for which service level is being measured.</td>
</tr>
<tr>
<td>Period Type</td>
<td>Period Type Code</td>
<td>Indicator of the period of time for which service level is being measured (e.g. &quot;DAY&quot;, &quot;CALENDAR WEEK&quot;, &quot;YEAR TO DATE&quot;).</td>
</tr>
<tr>
<td>Service Level Measurement Type</td>
<td>Service Level Measurement Type Code</td>
<td>Specifies whether the service level is based upon quantity shipped or quantity received. (Quantity received is the default.)</td>
</tr>
<tr>
<td>Calculation Basis</td>
<td>Service Level Basis Code</td>
<td>Indicator of the basis for which the Service Level is to be calculated. This parameter allows the service level/fill rate measure to be calculated on 4 options: &quot;ORDER&quot;, &quot;LINE&quot;, &quot;SHIPMENT&quot; or &quot;VOLUME&quot; basis.</td>
</tr>
</tbody>
</table>

### 7.3.9.6. Conditions

**Table** Error! No text of specified style in document.-1 Counted against Service Level/ Fill Rate Goals

<table>
<thead>
<tr>
<th>Description</th>
<th>When to Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beyond Selling Period</td>
<td>Product cut on items seasonal in nature with a buy period, or in-out products</td>
</tr>
<tr>
<td>CPU Space/Weight</td>
<td>Cut is driven by CPU truck size</td>
</tr>
<tr>
<td>Discontinued / Too Early Product</td>
<td>Quantity change due to a discontinued item, or new item prior to start ship</td>
</tr>
<tr>
<td>Major Service Issue</td>
<td>Product cut due to a major long-term supply chain issue communicated to buyers</td>
</tr>
<tr>
<td>Material Change</td>
<td>Materials / Orders being rejected</td>
</tr>
<tr>
<td>National Sales Allocation</td>
<td>Product cut due to a national allocation</td>
</tr>
<tr>
<td>Order Increment Adjustment</td>
<td>Quantity change because it doesn’t fit in case/layer/pallet increments.</td>
</tr>
<tr>
<td>Order Size Change</td>
<td>If supplier changes the quantity to the size of the order</td>
</tr>
<tr>
<td>Over ship – regular order</td>
<td>Over ship on 1 line item does not count toward fill rate/service level %</td>
</tr>
<tr>
<td>Erroneous Product Ship</td>
<td>Product not ordered was shipped – does count towards fill rate/service level %</td>
</tr>
<tr>
<td>Space/Weight Delivered</td>
<td>Cut due to space or weight of a delivered truck</td>
</tr>
<tr>
<td>Stock Out/Unavailable</td>
<td>Cuts product as product is not available</td>
</tr>
</tbody>
</table>
Description | When to Use
--- | ---
VMI Change | Change in VMI order after order has been placed.
VMI Original Order Qty | Units ordered by our Customer in the original order may not fulfill demand.
VMI return/refusal | Over ship on 1 line item and it for any reason it’s returned or refused.

<table>
<thead>
<tr>
<th>Description</th>
<th>When To Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Change</td>
<td>Materials / Orders being added not previously on an order</td>
</tr>
<tr>
<td>Over ship - VMI/CRP only</td>
<td>Over ship on 1 line item does not count toward fill rate/service level (unless it creates a cut in a different SKU.)</td>
</tr>
<tr>
<td>Quantity Change</td>
<td>Quantity change (increase or decrease) to item already on the order via buyer request</td>
</tr>
</tbody>
</table>

7.3.9.7. Examples

Example 1 Simple Scenario
- RET Company orders 10 products that total 1000 cases, on its Purchase Order #PO1.
- MAN Company sends an invoice for 800 cases, on its invoice #INV1 and the remaining 200 cases on its Invoice#INV2.
- The Fill Rate for this PO1 is 80%.

Calculation:
- **Fill Rate % =** Received Cases/ Ordered Cases. \(\frac{800}{1000} = 80\%\)
- **Ordered Cases =** System Captured Cases + Dropped Cases \(1000 + 0 = 1000\)
- **Received Cases =** Invoiced Cases (System Captured Cases – Cancelled Cases) – Refused Cases \((800 - 0) - 0\)

Example 2 Complex Scenario
- RET Company orders 10 products that total 1000 KG on its Purchase Order #PO1.
- MAN Company sends an invoice for 800 KG, on its invoice #INV1 and the remaining 200 KG on its Invoice#INV2.
- The Fill Rate for this PO1 is 50%.

Calculation:
- **Fill Rate % =** Received KG/ Ordered KG. \(\frac{500}{1000} = 50\%\)
- **Ordered Pounds =** System Captured KG + Dropped KG \(1000 + 0 = 1000\)
- **Received Pounds =** Invoiced KG (System Captured KG – Cancelled KG) – Refused KG \((800 - 0) - 300\)
Example 3 Erroneous Product Shipped Scenario

- RET Company orders 10 Product A and 10 of Product B on its Purchase Order #PO1.
- The Fill Rate for this PO1 is 50%. (Note: only calculate ORDERED quantity by Product for fill rate actual vs. overshipment)

7.3.9.8. Reference Source

- GCI KPI02/03 (unit basis vs. cost basis)

7.3.9.9. Typical Data Source

- Retailer for Received Fill Rate
- Supplier for Shipped Fill Rate
7.3.11. On Time Delivery (\%)

7.3.11.1. Aliases

■ None

7.3.11.2. Definition

The percentage of shipments that arrived on the receiver’s premises within the agreed date time out of all shipments that were delivered. The first scheduled appointment date time is the recommended agreed date time, and the complete agreed date time list is available in the parameter table.

7.3.11.3. Rationale

On Time Delivery is a measure that is used to evaluate the timeliness of deliveries to the receiver. It is commonly used between trading partners to determine the effectiveness of the transportation carrier that is being used, as well as the overall responsiveness of the supplier. Late deliveries create supply chain inefficiencies as they disrupt the receiving process and lead to extra trailer moves and appointment scheduling adjustments. In more “lean” or “just-in-time” environments, a poor On Time Delivery rating could have serious store service level ramifications, as it is an indicator that the product was not available for shipment to the stores.

7.3.11.4. Formula

\[
\text{OnTimeDelivery\%} = \left( \frac{\text{TotalDeliveries} - \text{NonCompliantDeliveries}}{\text{TotalDeliveries}} \right) \times 100
\]

■ Total Deliveries: refers the number of deliveries made from the supplier to the receiver in a given time period

■ Noncompliant Deliveries: refers to the number of deliveries that did not arrive on the receiver’s premises within the agreed date time in the same time period.

7.3.11.5. Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiving Location Scope Description</td>
<td>Text</td>
<td>Identifier of the store, region, country or other receiving location classification data element (e.g. &quot;Value Mart&quot;) for which on-time delivery is being measured.</td>
</tr>
<tr>
<td>Receiving Location Scope Type</td>
<td>Location Scope Type Code</td>
<td>Indicator of the type of location classification element the receiving Location Scope Description represents (e.g. &quot;STORE&quot;, &quot;CHAIN&quot;, &quot;REGION&quot;, &quot;COUNTRY&quot;).</td>
</tr>
<tr>
<td>Shipping Location Context Value</td>
<td>Text</td>
<td>Identifier of the ship point, supplier, country or other shipping location classification data element (e.g. &quot;North Distribution Region&quot;) for which on-time delivery is being measured.</td>
</tr>
<tr>
<td>Shipping Location Context Type</td>
<td>Location Scope Type Code</td>
<td>Indicator of the type of location classification element the shipping location context value represents (e.g. &quot;PLANT&quot;, &quot;SUPPLIER&quot;, &quot;REGION&quot;, &quot;COUNTRY&quot;).</td>
</tr>
<tr>
<td>Period End</td>
<td>Date Time Stamp</td>
<td>Date and time of the end of the period for which on-time delivery is being measured.</td>
</tr>
<tr>
<td>Parameter Name</td>
<td>Parameter Type</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------------------</td>
<td>----------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Period Type</td>
<td>Period Type Code</td>
<td>Indicator of the period of time for which on-time delivery is being measured (e.g. “DAY”, “CALENDAR WEEK”, “YEAR TO DATE”).</td>
</tr>
<tr>
<td>Periodicity</td>
<td>Periodicity Type Code</td>
<td>Specifies the time unit of measure of the reported result (e.g. “HOURS”, “DAYS”). The default value is “HOURS”.</td>
</tr>
<tr>
<td>Delivery Time Reference Basis</td>
<td>Delivery Time Reference Type Code</td>
<td>Specifies the source of the date to be used to determine whether a delivery was on-time (the original P.O. need-by date, the first scheduled appointment date time or the recipient last scheduled appointment date time). The first scheduled appointment date time is the recommended value.</td>
</tr>
<tr>
<td>Appointment Time Measurement Basis</td>
<td>Appointment Time Measurement Type Code</td>
<td>Specifies whether the calculation considers the appointment date time to be the latest time that the delivery can arrive (the default option), or the center of a delivery window that allows delivers before or after the appointment time by an amount indicated by the Appointment Window parameter.</td>
</tr>
<tr>
<td>Calculation Basis</td>
<td>Service Level Basis Code</td>
<td>Indicator of the basis for which the Service Level is to be calculated. This parameter allows the service level/fill rate measure to be calculated on 4 options: “ORDER”, “LINE”, “SHIPMENT” or “VOLUME” basis.</td>
</tr>
<tr>
<td>Delivery Window</td>
<td>Integer</td>
<td>The number of minutes before or after the appointment time that a delivery can arrive and still be considered on time, if the Appointment Time Measurement Basis is set to “Delivery Window.”</td>
</tr>
</tbody>
</table>

**7.3.11.6. Conditions**

1. On Time Delivery should be based on the receiver’s record of check-in.
2. There are several commonly used definitions for this measure. For example:
   - Some trading partners consider a delivery “on time” if it arrived within a defined time window (e.g. within 2 hours of a scheduled appointment date time). However, the most common definition considers a delivery “on time” only if it arrived on or before the scheduled appointment date time. While this measure supports both “delivery window” and “on or before” alternatives. The recommend approach is to use “on or before”.
   - Oftentimes, the timeliness of deliveries is measured against the original order (PO) date. However, the first scheduled appointment date time is the preferred target as it is the first time that both trading partners are able to confirm a delivery time. Similarly, the last scheduled appointment date time is not the preferred target as it often tends to measure a retailer, supplier, or carrier’s ability to adjust to last minute changes, as opposed to truly measuring on time delivery.

**DSD Considerations.**

- In a traditional Direct-Store-Delivery (DSD) environment, such as beverages, packaged cookies/crackers, and bagged snacks, there is typically not a “Purchase Order,” but rather an order that is generated by the supplier or an agent of the supplier. Therefore, “On Time Delivery” should be based on the order that is generated by the supplier.
- DSDs are typically measured by the ability to deliver the product within a date time window.
- Since there will not necessarily be a receiver check-in log, the DSD supplier’s records will determine whether a delivery is on time or not.
Given these considerations, DSD On Time Delivery should be the percentage of a supplier’s shipments that arrived at the store by the end of the agreed upon delivery window.

Backhaul / CPU Considerations

On Time Delivery for Customer Pick-Ups (CPU) should be measured the same as it is for traditional deliveries.

7.3.11.7. Examples

Example 1: “On or before” appointment time vs delivery window
A retail buyer creates a Purchase Order, which includes a delivery date of March 15. The supplier contracts with a carrier to make the delivery. The carrier calls the retailer to obtain an appointment date time at the retail distribution centre. The carrier is given an appointment date time of 3PM on March 15. According to the retail check-in records, the carrier arrived at the retail distribution guard shack at 3:15PM.

This delivery is late when the Delivery Time Reference Basis parameter is the “first scheduled appointment” date time and the Appointment Time Measurement Basis is “on or before”.

If the Appointment Time Measurement Basis is set to “delivery window” and the Delivery Window is equal to or greater than 15, the delivery would be considered on time.

Example 2: First vs Last scheduled appointment date time (weather related)
A retail buyer creates a Purchase Order, which includes a delivery date of March 15. The supplier contracts with a carrier to make the delivery. The carrier calls the retailer to obtain an appointment date time at the retail distribution centre. The carrier is given an appointment date time of 3PM on March 15. Due to a snow storm, the retailer contacts the carrier and pushes the delivery appointment back to 1PM on March 17. According to the retail check-in records, the carrier arrived at the retail distribution guard shack at 12:30PM on March 17.

The delivery is considered to be on time when the Delivery Time Reference Basis parameter is based on recipient last scheduled appointment date time and the Appointment Time Measurement Basis is “on or before”.

The delivery is considered late when the Delivery Time Reference Basis parameter is based on first scheduled appointment date time and the Appointment Time Measurement Basis is “on or before”.

Example 3: First vs Last scheduled appointment date time (production issue)
A retail buyer creates a Purchase Order, which includes a delivery date of March 15. The supplier contracts with a carrier to make the delivery. The carrier calls the retailer to obtain an appointment date time at the retail distribution centre. The carrier is given an appointment date time of 3PM on March 15. Due to a production problem, the supplier is behind and the product is not ready for shipment. The carrier calls the retailer to reschedule the delivery and they agree on a new appointment date time of 1PM on March 17. According to the retail check-in records, the carrier arrived at the retail distribution guard shack at 12:30PM on March 17.

The delivery is considered to be on time when the Delivery Time Reference Basis parameter is based on recipient last scheduled appointment date time.

The delivery is considered late when the Delivery Time Reference Basis parameter is based on first scheduled appointment date time.

Example 4: First scheduled appointment date time vs. need-by date
On March 14, a retail buyer creates a Purchase Order, which includes a delivery date of March 15. The supplier requires 3 days of lead time, so the product will not be available for delivery at the
distribution centre until March 17. The carrier calls the retailer to obtain an appointment date time at the retail distribution centre. The carrier is given an appointment date time of 3PM on March 17. According to the retail check-in records, the carrier arrived at the retail distribution guard shack at 2:30PM on March 17.

This load would be considered late when the Delivery Time Reference Basis parameter is based on the original P.O. need-by date.

This load would be considered on time when the Delivery Time Reference Basis parameter is based on first scheduled appointment date time.

Example 5: (direct store delivery)
Retail Outlet has set delivery days assigned by the supplier. Store has agreed upon delivery windows within those given days for DSD suppliers to arrive. Retailer has this schedule in their receiving system. Suppliers’ delivery driver arrives at the store on the day of the week and within the delivery window they are assigned to.

This is considered on time when the Delivery Time Reference Basis parameter is based on first scheduled appointment date time.

Example 6: Early delivery
A retail buyer creates a Purchase Order, which includes a delivery date of March 15. The supplier contracts with a carrier to make the delivery. The carrier calls the retailer to obtain an appointment date time at the retail distribution centre. The carrier is given an appointment date time of 3PM on March 15. According to the retail check-in records, the carrier arrived at the retail distribution guard shack at 12:30 PM.

This delivery is on time when the Delivery Time Reference Basis parameter is the “first scheduled appointment” date time and the Appointment Time Measurement Basis is “on or before.”

If the Appointment Time Measurement Basis is set to “delivery window” and the Delivery Window is less than 150, the delivery would be considered non-compliant.

7.3.11.8. Reference Source
- None

7.3.11.9. Typical Data Source
- Receiver (Retailer, Wholesaler) for the non DSD environment
- Supplier for the DSD environment
New  ASN/Packing List Accuracy (%)

1.1.1.1. Aliases
■  Shipping document accuracy

1.1.1.2. Definition
The percentage of product that a buyer received compared to the ASN (EDI 856) or Packing List documented shipped quantities. Note: Retailer capability/requirements will determine whether to use ASN or Packing List.

1.1.1.3. Rationale
Be able to use shipping documents from the supplier that will enable pre-receiving, pre-allocation and cross-docking of products at time of receiving, thus speeding up product time to market. Expediting receiving process by comparing Received Units at the shipment level vs. ASN/Packing List documented quantities at the shipment level.

1.1.1.4. Formula
Documented Shipped Units by LINE – Received Units by LINE = LINE Difference

Sum of Documented Shipped Units by LINE for total ASN/Packing List/Sum of Received Units by LINE Difference = Error %

100 - Error% = ASN/Packing List Accuracy %.
■  Received Units: Units received by the buyer by Product/Quantity.
■  Documented Shipped Units: Units documented on the ASN/Packing List at the shipment level by Product/Quantity.
■  NOTE: must count LINE level differences including overages and shortages.

1.1.1.5. Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiving Location Scope Description</td>
<td>Text</td>
<td>Identifier of the store, region, country or other receiving location classification data element (e.g. &quot;Value Mart&quot;) for which on-time delivery is being measured.</td>
</tr>
<tr>
<td>Receiving Location Scope Type</td>
<td>Location Scope Type Code</td>
<td>Indicator of the type of location classification element the receiving Location Scope Description represents (e.g. &quot;STORE&quot;, &quot;CHAIN&quot;, &quot;REGION&quot;, &quot;COUNTRY&quot;).</td>
</tr>
<tr>
<td>Shipping Location Context Value</td>
<td>Text</td>
<td>Identifier of the ship point, supplier, country or other shipping location classification data element (e.g. &quot;North Distribution Region&quot;) for which on-time delivery is being measured.</td>
</tr>
<tr>
<td>Shipping Location Context Type</td>
<td>Location Scope Type Code</td>
<td>Indicator of the type of location classification element the shipping location context value represents (e.g. &quot;PLANT&quot;, &quot;SUPPLIER&quot;, &quot;REGION&quot;, &quot;COUNTRY&quot;).</td>
</tr>
<tr>
<td>Period End</td>
<td>Date Time Stamp</td>
<td>Date and time of the end of the period for which on-time delivery is being measured.</td>
</tr>
</tbody>
</table>
### 1.1.1.6. Conditions

<table>
<thead>
<tr>
<th>Description</th>
<th>When to Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order Increment Adjustment</td>
<td>Quantity change because it doesn’t fit in case/layer/pallet increments.</td>
</tr>
<tr>
<td>Over ship – regular order</td>
<td>Over ship on 1 line item does count toward ASN/Pack List Accuracy %</td>
</tr>
<tr>
<td>Erroneous Product Ship</td>
<td>Product not on ASN or Packing List was shipped – does count towards ASN/Pack List Accuracy%</td>
</tr>
<tr>
<td>Space/Weight Delivered</td>
<td>Cut due to space or weight of a delivered truck after ASN/Packing List created</td>
</tr>
<tr>
<td>Stock Out/Unavailable</td>
<td>Cuts product as product is not available after ASN/Packing List created</td>
</tr>
<tr>
<td>VMI return/refusal</td>
<td>Over ship on 1 line item and it for any reason it’s returned or refused.</td>
</tr>
</tbody>
</table>

### Example 1 Simple Scenario

- MAN Company creates an ASN or Packing List for 800 cases of Product A on 3/3/2007 and ships the order.
- The ASN/Packing List Accuracy Rate for this shipment is 93.8%.

**Calculation:**

- **ASN/Packing List Accuracy %** = Documented Shipped Units by ASN/Packing List LINE – Received LINE cases (800-750 = 50/800 = 6.25%. 100% - 6.25% = 93.8% ASN/Packing List Accuracy Rate)

### Example 3 Erroneous Product Shipped Scenario

- MAN Company creates an ASN or Packing List for 100 cases of Product A and 50 of Product B on 3/3/2007 and ships the order.
- The ASN/Packing List Accuracy Rate for this shipment is 86.7%. (Note: Calculate RECEIVED quantity difference vs. the ASN/Packing List by Product for actual vs. overshipment or undershipment)
1.1.1.8. Reference Source
- None

1.1.1.9. Typical Data Source
- Receiver (Retailer, Wholesaler) for the non DSD environment
- Supplier for the DSD environment
New On Time ASN Delivery (%)

1.1.1.10. Aliases

- None

1.1.1.11. Definition

The percentage of ASNs (EDI 856) that were delivered to the retailer on time. Note: This does NOT measure when the Retailer retrieves/processes the ASN.

1.1.1.12. Rationale

Be able to use shipping documents from the supplier that will enable pre-receiving, pre-allocation and cross-docking of products at time of receiving, thus speeding up product time to market.

1.1.1.13. Formula

\[ \text{OnTimeASNDelivery\%} = \left( \frac{\text{TotalASNDeliveries} - \text{NonCompliantASNDeliveries}}{\text{TotalASNDeliveries}} \right) \times 100 \]

- Total ASN Deliveries: refers to the number of ASNs delivered and made available for Retailer retrieval/processing within one hour of product shipment from vendor in a given time period.
- Noncompliant ASN Deliveries: refers to the number of ASNs delivered that were NOT available for Retailer retrieval/processing within one hour of product shipment from vendor in the same time period.

1.1.1.14. Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiving Location Scope Description</td>
<td>Text</td>
<td>Identifier of the store, region, country or other receiving location classification data element (e.g. &quot;Value Mart&quot;) for which on-time delivery is being measured.</td>
</tr>
<tr>
<td>Receiving Location Scope Type</td>
<td>Location Scope Type Code</td>
<td>Indicator of the type of location classification element the receiving Location Scope Description represents (e.g. &quot;STORE&quot;, &quot;CHAIN&quot;, &quot;REGION&quot;, &quot;COUNTRY&quot;).</td>
</tr>
<tr>
<td>Shipping Location Context Value</td>
<td>Text</td>
<td>Identifier of the ship point, supplier, country or other shipping location classification data element (e.g. &quot;North Distribution Region&quot;) for which on-time delivery is being measured.</td>
</tr>
<tr>
<td>Shipping Location Context Type</td>
<td>Location Scope Type Code</td>
<td>Indicator of the type of location classification element the shipping location context value represents (e.g. &quot;PLANT&quot;, &quot;SUPPLIER&quot;, &quot;REGION&quot;, &quot;COUNTRY&quot;).</td>
</tr>
<tr>
<td>Period End</td>
<td>Date Time Stamp</td>
<td>Date and time of the end of the period for which on-time delivery is being measured.</td>
</tr>
<tr>
<td>Period Type</td>
<td>Period Type Code</td>
<td>Indicator of the period of time for which on-time delivery is being measured (e.g. &quot;DAY&quot;, &quot;CALENDAR WEEK&quot;, &quot;YEAR TO DATE&quot;).</td>
</tr>
<tr>
<td>Delivery Time Expectation</td>
<td>Delivery Time Expectation</td>
<td>Specifies the time unit of measure of the reported result – for Vendor Compliance purposes 60 minutes.</td>
</tr>
</tbody>
</table>
### Parameter Table

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculation Basis</td>
<td>Service Level Basis Code</td>
<td>Indicator of the basis for which the Service Level is to be calculated. This parameter allows the service level/fill rate measure to be calculated on 4 options: “ORDER”, “LINE”, “SHIPMENT” or “VOLUME” basis. Shipment is the default.</td>
</tr>
<tr>
<td>Delivery Window</td>
<td>Integer</td>
<td>The number of minutes before or after the appointment time that a delivery can arrive and still be considered on time, if the Appointment Time Measurement Basis is set to “Delivery Window.”</td>
</tr>
<tr>
<td>Calculation Basis</td>
<td>ASN Basis Code</td>
<td>Indicator of the basis for which the ASN on-time delivery is to be calculated.</td>
</tr>
</tbody>
</table>

### 1.1.1.15. Conditions

On Time Delivery of ASN should be based on the 856 date/time stamp of creation vs. the carrier 214 departed pick up location date/time stamp or, where absent, if the shipment arrives at Retailer prior to receipt of ASN, transit time to Retailer.

### 1.1.1.16. Examples

**Example 1: Carrier 214 Shipment Status Available**

A vendor creates an ASN 856 at 8:00 am, 3/15/2007 and sends to VAN/Retailer. (can be via AS2 or FTP) Carrier picks up shipment from Vendor warehouse at 8:00 am, 3/15/2007. Carrier Sends 214 Shipment Status departed pick up location code of 8:00 am, 3/15/2007 to Retailer. Shipment arrives at Retailer at 8:30 am, 3/15/2007. ASN is considered to be compliant.

**Example 2: Carrier 214 Shipment Status NOT Available**

Shipment departs from Vendor warehouse at 8:00 am, 3/15/2007. Vendor creates an ASN 856 at 9:30 am, 3/15/2007 and sends to VAN/Retailer. (can be via AS2 or FTP) Shipment arrives at Retailer at 8:30 am, 3/15/2007. ASN is NOT available at Retailer. Transit time from Vendor to Retailer is 30 minutes. Retailer evaluates create date/time stamp of Vendor ASN and ASN is considered to be non-compliant.

### 1.1.1.17. Reference Source

- None

### 1.1.1.18. Typical Data Source

- ASN 856 create date/time stamp from Retailer
- Carrier 214 Shipment Status Departed Pick Up Location date/time stamp
- Arrival date/time at Retailer vs. Transit Time
New Pre-Ticketed Product Accuracy (%)

1.1.1.19. Aliases

- None

1.1.1.20. Definition

The percentage of product that a buyer received with the correct tickets compared to the original ordered quantity.

1.1.1.21. Rationale

Be more externally focused using a measure that includes Buyer expectation vs. purely manufactured delivered capability. Improve Buyer's Pre-Ticketed Product Accuracy Rate by comparing Correctly Ticketed Received Units at the Buyer vs. Ordered Units by the Buyer. Buyer level reporting should match an individual buyer's ordering unit. This will enable trading partners to expedite products to market.

As part of the Trading Partner Performance scorecard, analysis of root cause data should drive the implementation of action plans, with the goal to systemically fix supply chain issues.

Principle

The “ordered units and Ticket information” should be taken from the “Original Buyer Order”. There are some events where the original orders are changed legitimately (e.g. wrong ticket ordered) which could be given a reason code that updates the original order without impacting the Pre-Ticketed Accuracy rate %.

Note: If Ticket changes are made between the Original Order and product receipt, trading partners must determine if adequate time to make change will impact on-time PO delivery and agreement will be reached whether to include Pre-Ticket accuracy rate for PO.

1.1.1.22. Formula

\[
\text{Pre-} \text{ticket Accuracy Rate} (\%) = \frac{\text{Compliant Received Units}}{\text{Ordered Units}} \times 100
\]

Ordered Units: Units ordered by the buyer in the original order with pretickets.

Compliant Received Units: Units received by the buyer in the original order with the correct tickets.

1.1.1.23. Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiving Location Scope Description</td>
<td>Text</td>
<td>Identifier of the store, region, country or other receiving location classification data element (e.g. “Value Mart”) for which on-time delivery is being measured.</td>
</tr>
</tbody>
</table>
### Conditions
- Preticket Accuracy should be based on the receiver’s record of detailed check-in, reading and scanning the tickets. A picture of non-compliant tickets should be included in correspondence with the vendor in error.

### Example
- RET Company orders 10 products that total 1000 cases, on its Purchase Order #PO1 with instructions for the vendor to preticket all items using a barcode and a price of $.99.
- RET Company evaluates the unit tickets and finds that 200 of them have a $.89 price point, while the other 800 have a correct $.99 cent price point. RET takes a picture of the erroneous $.89 tickets and sends to MAN Company.
- The Preticket Accuracy Rate for this PO1 is 80%.

### Reference Source
- None

### Typical Data Source
- PO ticketing instructions from Retailer
- Actual unit tickets at time of receipt
New Packaging Specifications Accuracy Rate (%)

1.1.1.28. Aliases
- None

1.1.1.29. Definition
The percentage of product that a buyer received with correct packaging compared to the Retailer's requirements.

1.1.1.30. Rationale
Packaging Accuracy Rate is a measure that is used to evaluate the accuracy of guideline adherence of the unit/product packaging requirements. Inadequate packaging creates supply chain inefficiencies as they disrupt the receiving process. Goods may have to me handled manually, or repaired prior to flowing through automated sortation systems.

1.1.1.31. Formula

\[
\text{Packaging Accuracy Rate(\%)} = \frac{\text{Compliant Received Units}}{\text{Ordered Units}} \times 100
\]

 Ordered Units: Units ordered by the buyer in the original order

Compliant Received Units: Units received by the buyer in the original order with correct packaging

1.1.1.32. Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiving Location Scope Description</td>
<td>Text</td>
<td>Identifier of the store, region, country or other receiving location classification data element (e.g. &quot;Value Mart&quot;) for which on-time delivery is being measured.</td>
</tr>
<tr>
<td>Receiving Location Scope Type</td>
<td>Location Scope Type Code</td>
<td>Indicator of the type of location classification element the receiving Location Scope Description represents (e.g. &quot;STORE&quot;, &quot;CHAIN&quot;, &quot;REGION&quot;, &quot;COUNTRY&quot;).</td>
</tr>
<tr>
<td>Shipping Location Context Value</td>
<td>Text</td>
<td>Identifier of the ship point, supplier, country or other shipping location classification data element (e.g. &quot;North Distribution Region&quot;) for which on-time delivery is being measured.</td>
</tr>
<tr>
<td>Shipping Location Context Type</td>
<td>Location Scope Type Code</td>
<td>Indicator of the type of location classification element the shipping location context value represents (e.g. &quot;PLANT&quot;, &quot;SUPPLIER&quot;, &quot;REGION&quot;, &quot;COUNTRY&quot;).</td>
</tr>
<tr>
<td>Period End</td>
<td>Date Time Stamp</td>
<td>Date and time of the end of the period for which on-time delivery is being measured.</td>
</tr>
<tr>
<td>Period Type</td>
<td>Period Type Code</td>
<td>Indicator of the period of time for which on-time delivery is being measured (e.g. &quot;DAY&quot;, &quot;CALENDAR WEEK&quot;, &quot;YEAR TO DATE&quot;).</td>
</tr>
</tbody>
</table>
### Parameter Table

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculation Basis</td>
<td>Service Level Basis</td>
<td>Indicator of the basis for which the Service Level is to be calculated. This</td>
</tr>
<tr>
<td></td>
<td>Code</td>
<td>parameter allows the service level/fill rate measure to be calculated on 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>options: “ORDER”, “LINE”, “SHIPMENT” or “VOLUME” basis.</td>
</tr>
</tbody>
</table>

#### 1.1.1.33. Conditions

- Packaging Accuracy should be based on the receiver’s record of detailed check-in, evaluating packaging vs. their requirements. A picture of non-compliant packaging should be included in correspondence with the vendor in error.

#### 1.1.1.34. Example

- RET Company orders 1000 units of Product A on its Purchase Order #PO1. Their packaging requirements are to ship GOH (garments on hangers).
- MAN Company ships out 1000 cases on 3/3/2007 with only 500 on hangers, and the remaining 500 units of Product A in plastic bags.
- RET Company receives the shipment of 1000 units of Product A and finds that 500 of them are correctly packaged on hangers, while the other 500 are in plastic bags inside the cartons. RET takes a picture of the Products in plastic bags as they receive them and sends to MAN Company.
- The Packaging Accuracy Rate for this PO1 is 50%.

#### 1.1.1.35. Reference Source

- None

#### 1.1.1.36. Typical Data Source

- Packaging instructions from Retailer (routing guide, online packaging requirements or instructions on PO.)
- Actual unit packaging at time of receipt
New  Carton Label Accuracy Rate (%)

1.1.1.37. Aliases
■ None

1.1.1.38. Definition
The percentage of product that a buyer received or the seller shipped with accurate GS1-128 carton labels compared to the original ordered quantity.

1.1.1.39. Rationale
GS1-128 Carton Label Accuracy Rate is a measure that is used to evaluate the accuracy of the GS1-128 carton labels. Incorrect labels create supply chain inefficiencies as they disrupt the receiving process. Goods may have to be handled manually, or relabelled, prior to flowing through automated sortation systems.

1.1.1.40. Formula

\[
CartonLabelAccuracyRate(\%) = \frac{CompliantReceivedCartons}{OrderedCartons} \times 100
\]

*Ordered Cartons:* Cartons ordered by the buyer in the original order

*Compliant Received Cartons:* Cartons received by the buyer in the original order with correct GS1-128 carton labels.

1.1.1.41. Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiving Location Scope Description</td>
<td>Text</td>
<td>Identifier of the store, region, country or other receiving location classification data element (e.g. &quot;Value Mart&quot;) for which on-time delivery is being measured.</td>
</tr>
<tr>
<td>Receiving Location Scope Type</td>
<td>Location Scope Type Code</td>
<td>Indicator of the type of location classification element the receiving Location Scope Description represents (e.g. &quot;STORE&quot;, &quot;CHAIN&quot;, &quot;REGION&quot;, &quot;COUNTRY&quot;).</td>
</tr>
<tr>
<td>Shipping Location Context Value</td>
<td>Text</td>
<td>Identifier of the ship point, supplier, country or other shipping location classification data element (e.g. &quot;North Distribution Region&quot;) for which on-time delivery is being measured.</td>
</tr>
<tr>
<td>Shipping Location Context Type</td>
<td>Location Scope Type Code</td>
<td>Indicator of the type of location classification element the shipping location context value represents (e.g. &quot;PLANT&quot;, &quot;SUPPLIER&quot;, &quot;REGION&quot;, &quot;COUNTRY&quot;).</td>
</tr>
<tr>
<td>Period End</td>
<td>Date Time Stamp</td>
<td>Date and time of the end of the period for which on-time delivery is being measured.</td>
</tr>
<tr>
<td>Period Type</td>
<td>Period Type Code</td>
<td>Indicator of the period of time for which on-time delivery is being measured (e.g. &quot;DAY&quot;, &quot;CALENDAR WEEK&quot;, &quot;YEAR TO DATE&quot;).</td>
</tr>
<tr>
<td>Parameter Name</td>
<td>Parameter Type</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Calculation Basis</td>
<td>Service Level Basis Code</td>
<td>Indicator of the basis for which the Service Level is to be calculated. This parameter allows the service level/fill rate measure to be calculated on 4 options: “ORDER”, “LINE”, “SHIPMENT” or “VOLUME” basis.</td>
</tr>
</tbody>
</table>

1.1.1.42. Conditions

- GS1-128 Carton Label Accuracy should be based on the receiver’s record of detailed check-in, evaluating carton labels vs. their requirements. A picture of non-compliant cartons with labels (if present) should be included in correspondence with the vendor in error.

1.1.1.43. Example

- RET Company orders 1000 Cartons of Product A on its Purchase Order #PO1 with GS1-128 Carton Labels.
- RET Company receives the shipment of 1000 Cartons of Product A and finds that 250 of them are have unscannable GS1-128 labels, and another 200 cartons do not have labels at all. RET takes a picture of the unscannable labels, as well as the cartons with no labels and sends to MAN Company.
- The GS1-128 Carton Label Accuracy Rate for this PO1 is 45%.

1.1.1.44. Reference Source

- GS1-128 Label Standards

1.1.1.45. Typical Data Source

- GS1-128 Label Standards and instructions from Retailer (routing guide, online requirements or instructions on PO.)
- Actual Cartons with accurate GS1-128 Labels at time of receipt